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Introduction to Transaction Processing

• The execution of any “program” that either accesses (queries) or 
changes the database contents is called a transaction.

• Serial transactions – two or more transactions are processed in serial 
fashion with one transaction starting and completing before the next 
transaction begins execution.  At no time, is more than one 
transaction processing or making progress.

• Interleaved transactions – two or more transactions are processed 
concurrently with only one transaction at a time actually making
progress.  This most often occurs on a single multi-programmed CPU.

• Simultaneous transactions – two or more transactions are processed 
concurrently with any number progressing at one time.  This is a
multiple CPU situation.
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Introduction to Transaction Processing (cont.)

t0 t1 t2 t3

T3 T1 T2 time 

Serial transactions (unknown number of CPUs)



COP 4710: Database Systems  (Transaction Processing)          Page 4 Mark Llewellyn ©

Introduction to Transaction Processing (cont.)

t0 t2 t4 t6

T3 T1 T2 time 

Interleaved transactions (single CPU)

t1 t5t3

T3 T2 T1
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Introduction to Transaction Processing (cont.)

t0 t1

T1

time 

Simultaneous transactions (3 CPUs shown)

T3

T2
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Introduction to Transaction Processing (cont.)

• When viewed at the transaction level, any transaction has the 
potential to access the database in two ways:

– read(item):  reads the value of some database item.

– write(item): write the value of an item into the database.

• These are not atomic operations.

• To read an item the following must occur:
– find the address of the disk block that contains the item.
– copy the disk block into buffer (if not already present).
– copy the item from the buffer into the “program”.
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Introduction to Transaction Processing (cont.)

• To write an item the following must occur:
– find the address of the disk block that contains the item.
– copy the disk block into buffer (if not already present).
– copy the item from the buffer into the “program”.
– store the updated block from the buffer back onto the disk (at some point 

in time, usually not immediately).

• When to write back is typically up to the recovery system of 
the database and may involve OS control.

• Too early of a write back may cause unnecessary data 
transfers.

• Too late of a write back may cause unnecessary blocking.
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Concurrency Control
• Given a consistent (correct?) state of the database as input an 

individually correct transaction will produce a correct state of
the database as output, if that transaction is executed in 
isolation.

• The goal of concurrency control is to allow multiple 
transactions to be processing simultaneously within a certain 
time period with all of the concurrent transactions producing 
a correct state of the database at then end of their concurrent 
execution.
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Concurrency Control – Why Its Needed
• There are many different types of conflicts that can occur between 

concurrently executing processes if concurrency control is not enforced.

Lost Update Problem (A Write-Write Conflict) (overwriting uncommitted data)

• Suppose two distinct transactions T1 and T2 are processing in the 
concurrent order shown below accessing a common value n.

time action comment

t0 T1 performs read(n) suppose T1 reads value of n = 5

t1 T2 performs read(n) T2 will read a value of n = 5

t2 T1 performs write(n-1) T1 will write value of n = 4

t3 T2 performs write(n-1) T2 will also write value of n = 4!

• Problem:  The update performed by T1 at time t2 is “lost” since the update 
written by T2 at time t3 overwrites the previous value.
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Handling the Lost Update Problem
• There are several different ways in which the lost update 

problem can be handled.  

1. Prevent T2 from reading the value of n at time t1 on the grounds that T1 has 
already read the value of n and may therefore update the value.

2. Prevent T1 from writing the value of n-1 at time t2 on the grounds that T2 
has also read the same value of n and would therefore be executing on an 
obsolete value of n, since T2 cannot re-read n.

3. Prevent T2 from writing the value of n-1 at time t3 on the grounds that T1 
has already updated the value of n and since T1 preceded T2, then T2 is using 
an obsolete value of n.

• The first two of these techniques can be implemented using locking 
protocols, while the third technique can be implemented with time-
stamping.  We’ll see both of these techniques later.
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The Dirty Read Problem
Dirty Read Problem (A Write-Read Conflict)(reading uncommitted data)

• Suppose two distinct transactions T1 and T2 are processing in the 
concurrent order shown below accessing a common value n.

time action comment

t0 T1 performs read(n) suppose T1 reads value of n = 5

t1 T1 performs write(n-1) T1 writes a value of n = 4

t2 T2 performs read(n) T2 will read value of n = 4

t3 T1 aborts T2 is executing with a “bad” value of n

• Problem:  T2 is operating with a value that was written by a transaction that 
aborted prior to the completion of T2.  When T1 aborts all of its updates must be 
undone, which means that T2 is executing with a bad value of n and therefore 
cannot leave the database in a consistent state.  

Solution:  T2 must also be aborted.
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The Unrepeatable Read Problem
Unrepeatable Read Problem (A Read-Write Conflict)

• Suppose two distinct transactions T1 and T2 are processing in the 
concurrent order shown below accessing a common value n.

time action comment

t0 T1 performs read(n) suppose T1 reads value of n = 5

t1 T1 performs read(n) T1 reads a value of n = 5

t2 T2 performs write(n-1) T2 will write value of n = 4

t3 T1 performs read(n) T1 reads a different value of n this time

• Problem:  When T1 performs its second read of n, the value is not the same as its 
first read of n.  T1 cannot repeat its read. 

Solution:  This problem is typically handled with locking which is rather inflexible, but 
can also be solved with time-stamping.



COP 4710: Database Systems  (Transaction Processing)          Page 13 Mark Llewellyn ©

The Transaction Recovery System
• Whenever a transaction is submitted to the DBMS for 

execution, the DBMS is responsible for making sure that 
either:

1 All operations of the transaction are completed successfully and their 
effect is permanently recorded in the database, or

2 The transaction has no effect whatsoever on the the database or any 
other transaction.

• If a transaction fails after executing some of its operations, 
problems will occur with consistency in the database.  
Therefore, if a transaction fails after its is initiated but prior 
to its commitment, all of the effects of that transaction must 
be undone from the database.
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The Transaction Recovery System (cont.)

• Types of failures for a transaction:

– System crash – some type of hardware or system failure occurs.

– Transaction error – integer overflow, division by zero, operator 
intervention.

– Local errors or exception conditions – required data is not available.

– Concurrency control enforcement – serializability is violated, 
deadlock detection victim selection, etc.

– Disk errors – error correction/detection.

– Physical problems – fire, power failure, operator error, etc.
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The States of a Transaction
• A transaction can be in one of several different states:

– begin_transaction:  marks the beginning of the transaction.

– read/write:  specifies the various db operations performed by the 
transaction.

– end_transaction:  specifies that all read/write operations have ended 
and the transaction is ready to terminate.  Note: this does not actually 
end the transactions time in the system – now it heads to the 
concurrency control system for verification.

– commit: marks the successful end of the transaction – its effects are 
now permanent (committed) in the database and cannot be undone.

– abort (rollback): marks the unsuccessful end of the transaction.  All 
changes and effects in the database must be undone and/or other 
transactions must be aborted.  No changes are committed for the 
transaction.
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The States of a Transaction (cont.)

active

begin_transaction

partially
committed

failed

committed

terminated

end_transaction

read/write

abort

abort

commit
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System Log
• The system log keeps track of all transaction operations that 

affect values of database items.

• The information in the log is used to perform recovery 
operations from transaction failures.

• Most logs consist of several levels ranging from the log 
maintained in main memory to archival versions on backup 
storage devices.

• Upon entering the system, each transaction is given a unique 
transaction identifier (timestamps are common).
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System Log (cont.)

• In the system log, several different types of entries occur 
depending on the action of the transaction:

– [start, T]: begin transaction T.

– [write, T, X, old, new]: transaction T performs a write on object X, 
both old and new values of X are recorded in the log entry.

– [read, T, X]: transaction T performs a read on object X.

– [commit, T]: transaction T has successfully completed and indicates 
that its changes can be made permanent.

– [abort, T]: transaction T has aborted.

• Some types of recovery protocols do not require read 
operations be logged.
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Commit Point
• A transaction T reaches its commit point when all of its 

operations that access the database have successfully 
completed and the effect of all of these operations have been 
recorded in the log.

• Beyond the commit point, a transaction is said to be 
committed and its effect on the database is assumed to be 
permanent.  It is at this point that [commit, T] is entered into
the system log.

• If a failure occurs, a search backward through the log (in 
terms of time) is made for all transactions that have written a 
[start, T] into the log but have not yet written [commit, T] 
into the log.   This set of transactions must be rolled back.
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ACID Properties of Transactions
• Atomcity – a transaction is an atomic unit of processing; it is  

either performed in its entirety or not at all.

• Consistency – a correct execution of the transaction must 
take the database from one consistent state to
another.

• Isolation – a transaction should not make its updates visible 
to other transactions until it is committed.  Strict 
enforcement of this property solves the dirty read 
problem and prevents cascading rollbacks from 
occurring.

• Durability – once a transaction changes the database and 
those changes are committed, the changes 
must never be lost because of a failure.
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Schedules and Recoverability
• When transactions are executing concurrently in an 

interleaved fashion, the order of execution of the operations 
from the various transactions forms what is known as a 
transaction schedule (sometimes called a history).

A schedule S of n transactions T1, T2, T3, ..., Tn is an 
ordering of the operations of the transactions where for 
each transaction Ti ∈ S, each operation in Ti occurs in 
the same order in both Ti and S.
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Schedules and Recoverability (cont.)

• The notation used for depicting schedules is:

– ri(x)  means that transaction i performs a read of object x.

– wi(x) means that transaction i performs a write of object x.

– ci means that transaction i commits.

– ai means that transaction i aborts.

• An example schedule: SA = (r1(x), r2(x), w1(x), w2(x), c1, c2)

• This example schedule represents the lost update problem.

• Another example:

SB = (r1(x), r1(y), w1(y), r2(x), w1(x), w2(y), c2, c1)
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Conflict in a Schedule

• Two operations in a schedule are said to conflict if they 
belong to different transactions, access the same item, and 
one of the operations is a write operation.

• Consider the following schedule:

SA = (r1(x), r2(x), w1(x), c1, c2)

r2(x) and w1(x) conflict

r1(x) and r2(x) do not conflict.
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Recoverability
• For some schedules it is easy to recover from transaction 

failures, while for others it can be quite difficult and 
involved.

• Recoverability from failures depends in large part on the 
scheduling protocols used.  A protocol which never rolls 
back a transaction once it is committed is said to be a 
recoverable schedule.

• Within a schedule a transaction T is said to have read from a 
transaction T* if in the schedule some item X is first written 
by T* and subsequently read by T.
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Recoverability (cont.)

• A schedule S is a recoverable schedule if no transaction T in S commits 
until all transactions T* that have written an item which T reads have 
committed.

– For each pair of transactions Tx and Ty, if Ty reads an item previously written 
by Tx, then Tx must commit before Ty.

Example:  SA = (r1(x), r2(x), w1(x), r1(y), w2(x), c2, w1(y), c1)

This is a recoverable schedule since, T2 does not read any item written by T1 and 
T1 does not read any item written by T2.

Example: SB = (r1(x), w1(x), r2(x), r1(y), w2(x), c2, a1)

This is not a recoverable schedule since T2 reads value of x written by T1
and T2 commits before T1 aborts.  Since T1 aborts, the value of x written 
by T2 must be invalid so T2 which has committed must be rolled back 
rendering schedule SB not recoverable.
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Cascading Rollback
• Cascading rollback occurs when an uncommitted transaction 

must be rolled back due to its read of an item written by a 
transaction that has failed.

Example:  SA = (r1(x), w1(x), r2(x), r1(y), r3(x), w2(x), w1(y), a1)

In SA, T3 must be rolled back since T3 read value of x produced by T1 and 
T1 subsequently failed.  T2 must also be rolled back since T2 read value of 
x produced by T1 and T1 subsequently failed.  

Example:  SB = (r1(x), w1(x), r2(x), w2(x), r3(x), w1(y), a1)

In SB, T2 must be rolled back since T2 read value of x produced by T1 and 
T1 subsequently failed.  T3 must also be rolled back since T3 read value of 
x produced by T2 and T2 subsequently failed.  T3 is rolled back, not 
because of the failure of T1 but because of the failure of T2.
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Cascading Rollback (cont.)

• Cascading rollback can be avoided in a schedule if every 
transaction in the schedule only reads items that were written 
by committed transactions.

• A strict schedule is a schedule in which no transaction can 
read or write an item x until the last transaction that wrote x
has committed (or aborted).

– Example: SA = (r1(x), w1(x), c1, r2(x), c2)
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Serializability
• Given two transactions T1 and T2, if no interleaving of the 

transactions is allowed (they are executed in isolation), then 
there are only two ways of ordering the operations of the two 
transactions.  

Either: (1) T1 executes followed by T2

or (2) T2 executes followed by T1

• Interleaving of the operations of the transactions allows for 
many possible orders in which the operations can be 
performed.
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Serializability (cont.)

• Serializability theory determines which schedules are correct 
and which are not and develops techniques which allow for 
only correct schedules to be executed.

• Interleaved execution, regardless of what order is selected, 
must have the same effect of some serial ordering of the 
transactions in a schedule.

• A serial schedule is one in which every transaction T that 
participates in the schedule, all of the operations of T are 
executed consecutively in the schedule, otherwise the 
schedule is non-serial.
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Serializability (cont.)

• A concurrent (or interleaved) schedule of n transactions is serializable if 
it is equivalent (produces the same result) to some serial schedule of the 
same n transactions.

• A schedule of n transactions will have n! serial schedules and many more 
non-serial schedules.

• Example:  Transactions T1, T2, and T3 have the following serial 
schedules:  (T1, T2, T3), (T1, T3, T2), (T2, T1, T3), (T2, T3, T1), (T3, 
T1, T2), and (T3, T2, T1).

• There are two disjoint sets of non-serializable schedules:

– Serializable: those non-serial schedules which are equivalent to one or more 
of the serial schedules.

– Non-serializable: those non-serial schedules which are not equivalent to any 
serial schedule.
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Serializability (cont.)

• There are two main types of serializable schedules:

– Conflict serializable:  In general this is an O(n3) problem where n
represents the number of vertices in a graph representing distinct 
transactions.

– View serializable:  This is an NP-C problem, meaning that the only 
known algorithms to solve it are exponential in the number of 
transactions in the schedule.

• We’ll look only a conflict serializable schedules.

• Recall that two operations in a schedule conflict if (1) they 
belong to different transactions, (2) they access the same 
database item, and (3) one of the operations is a write.
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Conflict Serializability
• If the two conflicting operations are applied in different 

orders in two different schedules, the effect of the  schedules 
can be different on either the transaction or the database, and 
thus, the two schedules are not conflict equivalent.

– Example:  SA = (r1(x), w2(x))

SB = (w2(x), r1(x))

The value of x read in SA may be different than in SB.

– Example:  SA = (w1(x), w2(x), r3(x))

SB = (w2(x), w1(x), r3(x))

The value of x read by T3 may be different in SA than in SB
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Conflict Serializability (cont.)

• To generate a conflict serializable schedule equivalent to 
some serial schedule using the notion of conflict equivalence 
involves the reordering of non-conflicting operations of the 
schedule until an equivalent serial schedule is produced.

• The technique is this:  build a precedence graph based upon 
the concurrent schedule.  Use a cycle detection algorithm on 
the graph.  If a cycle exists, S is not conflict serializable.  If 
no cycle exists, a topological sort of the graph will yield an 
equivalent serial schedule.
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Algorithm Conflict_Serializable
Algorithm Conflict_Serializable

//input:  a concurrent schedule S

//output:  no – if S is not conflict serializable, a serial schedule S* equivalent to S otherwise.

Conflict_Serializable(S)

1. for each transaction TX ∈ S, create a node (in the graph) labeled TX.

2. (RAW: READ AFTER WRITE) for each case in S where TY executes read(a) after TX
executes write(a) create the edge TX → TY.  The meaning of this edge is that TX must 
precede TY in any serially equivalent schedule.

3. (WAR: WRITE AFTER READ) for each case in S where TY executes write(a) after TX
executes read(a) create the edge TX → TY.  The meaning of this edge is that TX must 
precede TY in any serially equivalent schedule.

4. (WAW: WRITE AFTER WRITE) for each case in S where TY executes write(a) after TX
executes write(a) create the edge TX → TY.  The meaning of this edge is that TX must 
precede TY in any serially equivalent schedule.

5. if the graph contains a cycle then return no, otherwise topologically sort the graph and 
return a serial schedule S* which is equivalent to the concurrent schedule S.
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Conflict Serializability – Example #1

T1 T2

Graph contains no  cycle, so SC is conflict serializable

1:  r1(a) precedes w2(a)  (WAR)

2:  w1(a) precedes r2(a)  (RAW)

3:  w1(a) precedes w2(a)  (WAW)

1,2,3

Let SC = (r1(a), w1(a), r2(a) w2(a), r1(b), w1(b))
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Conflict Serializability – Example #1

T1 T2

w1(a) precedes r2(a)  (RAW)

Graph contains a cycle, so SC is not conflict serializable

Let SC = (r1(a), r2(a), w1(a), r1(b), w2(a), w1(b))

1:  r1(a) precedes w2(a)  (WAR)

2:  r2(a) precedes w1(a)  (WAR)

3:  w1(a) precedes w2(a)  (WAW)

2

1,3
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Conflict Serializability – Example #2
Let SC = (r3(y), r3(z), r1(x), w1(x), w3(y), w3(z), r2(z), r1(y), w1(y), 

r2(y), w2(y), r2(y), w2(y) )

Graph contains no cycles, so a serially equivalent schedule would be T3, T1, T2.

T1 T2

T3

edge reason

1 w3(y) precedes r2(y)  (RAW)

2 w1(x) precedes r2(x)  (RAW)

3 w3(z) precedes r2(z)  (RAW)

4 w1(y) precedes r2(y)  (RAW)

5 r3(y) precedes w1(y)  (WAR)

6 r1(x) precedes w2(x)  (WAR)

7 r1(y) precedes w2(y)  (WAR)

There are seven other conflicts that can 
be found in this schedule, but none of 
them will introduce a cycle.  Find the 
missing seven.

2, 4, 6, 7

1, 35
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Concurrency Control Techniques

• There are several different techniques that can be employed 
to handle concurrent transactions.

• The basic techniques fall into one of four categories:

1. Locking protocols

2. Timestamping protocols

3. Multiversion protocols – deal with multiple versions of the same data

4. Optimistic protocols – validation and certification techniques
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Locking Protocols
• Transactions “request” locks and “release” locks on database 

objects through a system component called a lock manager.

• Main issues in locking are:

– What type of locks are to be maintained.

– Lock granularity: runs from very coarse to very fine.

– Locking protocol

– Deadlock, livelock, starvation

– Other issues such as serializability

LOCK
MANAGER

process
request

grant

deny

issue lock – transaction continues

abort

block in queue
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Locking Protocols (cont.)

• Locking protocols are quite varied in their degree of 
complexity and sophistication, ranging from very simple yet 
highly restrictive protocols, to quite complex protocols which 
nearly rival time-stamping protocols in their flexibility for 
allowing concurrent execution.

• In order to give you a flavor of how locking protocols work, 
we’ll focus on only the most simple locking protocols.

• While the basic techniques of all locking protocols are the 
same, in general, the more complex the locking protocol the 
higher the degree of concurrent execution that will be 
permitted under the protocol.
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Locking Granularity
• When devising a locking protocol, one of the first things that must 

be considered is the level of locking that will be supported by the 
protocol.

• Simple protocols will support only a single level of locking while 
more sophisticated protocols can support several different levels of 
locking.

• The locking level (also called the locking granularity), defines the 
type of database object on which a lock can be obtained.  

• The coarsest level of locking is at the database level, a transaction 
basically locks the entire database while it is executing.  
Serializability is ensured because with the entire database locked, 
only one transaction can be executing at a time, which ensures a
serial schedule of the transactions.  
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Locking Granularity (cont.)

• Moving toward a finer locking level, typically the next level of locking 
that is available is at the relation (table) level.  In this case, a lock is 
obtained on each relation that is required by a transaction to complete its 
task.

– If we have two transactions which need different relations to accomplish their 
tasks, then they can execute concurrently by obtaining locks on their 
respective relations without interfering with one another.  Thus, the finer 
grain lock has the potential to enhance the level of concurrency in the system.

• The next level of locking is usually at the tuple level. In this case several 
transactions can be executing on the same relation simultaneously, 
provided that they do not need the same tuples to perform their tasks.

• At the extreme fine end of the locking granularity would be locks at the 
attribute level.  This would allow multiple transactions to be 
simultaneously executing in the same relation in the same tuple, as long 
as they didn’t need the same attribute from the same tuple at the same 
time.  At this level of locking the highest degree of concurrency will be 
achieved.
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Locking Granularity (cont.)

• There is, unfortunately a trade-off between enhancing the level of 
concurrency in the system and the ability to manage the locks.

– At the coarse end of the scale we need to manage only a single lock, 
which is easy to do, but this also gives us the least degree of 
concurrency.

– At the extremely fine end of the scale we would need to manage an 
extremely large number of locks in order to achieve the highest 
degree of concurrency in the system.

• Unfortunately, with VLDB (Very Large Data Bases) the number 
of locks that would need to be managed at the attribute level poses 
too complex of a problem to handle efficiently and locking at this 
level almost never occurs.
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Locking Granularity (cont.)

– For example, consider a fairly small database consisting of 10 
relations each with 10 attributes and suppose that each relation has 
1000 tuples.  This database would require the management of 10 × 10 
× 1000 = 100,000 locks.  A large database with 50 relations each 
having 25 attributes and assuming that each relation contained on the 
order of a 100,000 tuples; the number of locks that need to be 
managed grows to 1.25×108 (125 million locks).

• A VLDB with hundreds of relations and hundreds of attributes and
potentially millions of tuples can easily require billions of locks to 
be maintained if the locking level is at the attribute level.

• Due to the potentially overwhelming number of locks that would 
need to be maintained at this level, a compromise to the tuple level 
of locking is often utilized. 
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Types of Locks
• There are different types of locks that locking protocols may 

utilize.

• The most restrictive systems use only exclusive-locks (X-
lock also called a binary lock).

• An exclusive lock permits the transaction which holds the 
lock exclusive access to the object of the lock.

• The process of locking and un-locking objects must be 
indivisible operations within a critical section.  There can be 
no interleaving of issuing and releasing locks.

If transaction TX holds an X-lock on object A then no distinct transaction TY
can obtain an X-lock on object A until transaction TX releases the X-lock 
on object A.  TY is blocked awaiting the X-lock on object A.
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X-Lock Protocol

• When the lock manager grants a transaction’s request for a 
particular lock, the transaction is said to “hold the lock” on 
the object.

• Under the X-lock protocol a transaction must obtain, for 
every object required by the transaction, an X-lock on the 
object.  This applies to both reading and writing operations.

Before any transaction TX can read or write an object A, it must first acquire an X-
lock on object A.  If the request is granted TX will proceed with execution.  If the 
request is denied, TX will be placed into a queue of transactions awaiting the X-
lock on object A, until the lock can be granted.  After TX finishes with object A, it 
must release the X-lock.
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Serializability Under X-Lock Protocol

Algorithm TestSerializiabiltyXLock

//input:  a concurrent schedule S under X-lock protocol

//output: if S is serializable, then a serially equivalent schedule S′ is produced, otherwise, no.

TestSerializabilityXLock(S)

1. let S = (a1, a2, ..., an) where “action” ai is either (TX: Xlock A) or (TX: Unlock A)

2. construct a precedence graph of n nodes where n is the number of distinct 
transactions in S.

3. proceed through S as follows:

• if ar = (TX: Unlock A) then look for the next action as of the form (TY: Xlock A).  
If one exists, draw an edge in the graph from TX to TY.  The meaning of this 
edge is that in any serially equivalent schedule TX must precede TY.

4. if the graph constructed in step 3 contains a cycle, then S is not equivalent to any 
serial schedule (i.e., S is not serializable).  If no cycle exists, then any topological 
sort of the graph will yield a serial schedule equivalent to S.
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Example - X-Lock Protocol and Serializability
Let S = [(T1: Xlock A), (T2: Xlock B), (T2: Xlock C), (T2: Unlock B), 

(T1: Xlock B), (T1: Unlock A), (T2: Xlock A), (T2:Unlock C), 

(T2: Unlock A), (T3: Xlock A), (T3: Xlock C), (T1: Unlock B),

(T3: Unlock C), (T3: Unlock A)]

T1 T2

T3

Edge #1:  (T2: Unlock B)...(T1:Xlock B)

Edge #2: (T1: Unlock A)...(T2: Xlock A)

Edge #3: (T2: Unlock C)...(T3: Xlock C)

Edge #4: (T2: Unlock A)...(T3: Xlock A)

3

2

1

Not serializable, cycle exists

, 4
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Problems with X-Lock Protocol
• The X-lock protocol is too restrictive.

• Several transactions that need only to read an object must all wait in turn 
to gain an X-lock on the object, which unnecessarily delays each of the 
transactions.

• One solution is to issue different types of locks, called shared-locks (S-
locks or read-locks) and write-locks (X-locks).

• The lock manager can grant any number of shared locks to concurrent 
transactions that need only to read an object, so multiple reading is 
possible.  Exclusive locks are issued to transactions needing to write an 
object.

• If an X-lock has been issued on an object to transaction TX, then no other 
distinct transaction TY can be granted either an S-lock or an X-lock until 
TX releases the X-lock.  If any transaction TX holds an S-lock on an 
object, then no other distinct transaction TY can be granted an X-lock on 
the object until all S-locks have been released.



COP 4710: Database Systems  (Transaction Processing)          Page 50 Mark Llewellyn ©

Serializability Under X/S-Lock Protocol
Algorithm TestSerializiabiltyX/SLock

//input:  a concurrent schedule S under X/S-lock protocol

//output: if S is serializable, then a serially equivalent schedule S′ is produced, otherwise, no.

TestSerializabilityXLock(S)

1. let S = (a1, a2, ..., an) where “action” ai is one of (TX: Slock A),  (TX: Xlock A)            
or (TX: Unlock A).

2. construct a precedence graph of n nodes where n is the number of distinct 
transactions in S.

3. proceed through S as follows:

• if ax = (TX: Slock A) and ay is the next action (if it exists) of the form (TY: Xlock 
A) then draw an edge from TX to TY.

• if ax = (TX: Xlock A) and there exists an action az = (TZ: Xlock A) then draw an 
edge in the graph from TX to TZ.  Also, for each action ay of the form (TY: Slock 
A) where ay occurs after ax (TX: Unlock A) but before aZ (TZ: Xlock A) draw an 
edge from TX to TY.   If az does not exist, then TY is any transaction to perform 
(TY: Slock A) after (TX: Unlock A).

4. if the graph constructed in step 3 contains a cycle, then S is not equivalent to any 
serial schedule (i.e., S is not serializable).  If no cycle exists, then any topological 
sort of the graph will yield a serial schedule equivalent to S.
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Example – X/S-Lock Protocol and Serializability
Let S = [(T3: Xlock A), (T4: Slock B), (T3: Unlock A), (T1: Slock A), 

(T4: Unlock B), (T3: Xlock B), (T2: Slock A), (T3:Unlock B), 

(T1: Xlock B), (T2: Unlock A), (T1: Unlock A), (T4: Xlock A),

(T1: Unlock B), (T2: Xlock B), (T4: Unlock A), (T2: Unlock B)]

Edge #1: (T4: Slock B)...(T3: Xlock B)
Edge #2: (T1: Slock A)...(T4: Xlock A)
Edge #3: (T2: Slock A)...(T4: Xlock A)
Edge #4: (T3: Xlock A)...(T4: Xlock A)

Edge #5: (T3: Unlock A)...(T1: Slock A)
Edge #6: (T3: Unlock A)...(T2: Slock A)

Edge #7: (T3: Xlock B)...(T1:Xlock B)
Edge #8: (T1: Xlock B)...(T2: Xlock B)

Not serializable, cycle exists

T1 T2

T3

2

1T4

3

4

5

8

6

,7
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Problems Locking Protocols

• The X-lock protocol can lead to deadlock.

– For example consider the schedule S = [(T1:Xlock A), (T2: Xlock B),

(T1: Xlock B), (T2: Xlock A)]

• While there are many different techniques that can be used to 
avoid deadlock, most are not suitable to the database 
environment.

T1 is blocked T2 is blocked
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Deadlock Avoidance - Problems Locking Protocols
(cont.)

• Impose a total ordering on the objects.

– Problem is the set of lockable objects is very large and changes dynamically.
– Many database transactions determine the lockable object based on content 

and not name.
– The locking scope of a transaction is typically determined dynamically.

• Two-phase locking protocols.
– All locks are granted at the beginning of a transaction’s processing or no 

locks are granted.  Transactions which cannot acquire all of the locks they 
need are suspended without being granted any locks.

– Leads to low data utilization, low-levels of concurrency and livelock.
– Livelock occurs when a transaction that needs several “popular” items is 

consistently blocked by transactions which need only one of the popular 
items.
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Concurrency Control: Locking in B+ Trees

• An often used and straightforward approach to 
concurrency control for B+ trees and ISAM indices 
is to ignore the index structure and treat each page 
as a data object utilizing some variant of two-phase 
locking.

• Unfortunately, this simplistic locking strategy leads 
to very high lock contention in the higher levels of 
the tree, since each search begins at the route and 
proceeds along some path to a leaf node.

• Fortunately, there are several much better locking 
approaches available that exploit the hierarchical 
nature of the tree index that will ensure 
serializability and reduce the locking overhead.
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Concurrency Control: Locking in B+ Trees (cont.)

• Two  observations are important to understand how B+

locking strategies can be developed:

1. The higher levels of the tree only direct searches.  All of the “real”
data is in the leaf level.

2. For insertions, a node must be locked (exclusively) only if a split can 
propagate up to it from the modified leaf node.

• Searches should obtain shared locks on modes, starting at the 
root and proceeding along a path to the desired leaf.

• The first observation suggests that a lock on a node can be 
released as soon as a lock on a child node is obtained, 
because searches never go back up the tree.



COP 4710: Database Systems  (Transaction Processing)          Page 56 Mark Llewellyn ©

Concurrency Control: Locking in B+ Trees (cont.)

• A conservative (pessimistic) locking strategy for inserts 
would be to obtain exclusive locks on all the nodes as we go 
down from the root to the leaf node that will be modified, 
because splits can propagate all the way from the leaf to the 
root in the worst case.

• However, once the child of a node is locked, the lock on that 
node would only be required to be maintained in the event 
that a split could propagate back to it.

• Specifically, if the child of this node (on the path to the 
modified leaf) is not full when it is locked, any split that 
propagates up to the child can be resolved at the child and 
will not propagate further up the tree to the current node. 

• Therefore, when the child node is locked, the lock on the 
parent node can be released if the child node is not full.
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Concurrency Control: Locking in B+ Trees (cont.)

• The locks held by an inserting transaction 
force any other transaction following the 
same path to wait at the earliest point (the 
node closest to the root) that might be 
affected by the insert.

• This technique of locking a child node and (if 
possible) releasing the lock on its parent is 
called lock-coupling.

• The examples on the next few pages illustrate 
concurrency control in B+ trees.
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Concurrency Control: Locking in B+ Trees (cont.)

20

10 35

6 12 23 38 44

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

Initial B+ tree
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Search For Key Value 38
20

10 35

6 12 23 38 44

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

Transaction obtains S-lock on node 
B, releases lock on node A, reads 
contents of node B to determine 
next node to lock is node C. Obtains 
lock on node C, releases lock on 
node B.

Transaction obtains S-lock on root 
node (A), reads contents to determine 
next node to examine (B), obtains lock 
on node B, releases lock on node A.

A

B

C

D

Transaction reads 
contents of node C, 
determines need for 
node D, obtains S-
lock on D, releases 
lock on node C.
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Concurrency Control: Locking in B+ Trees (cont.)

• Notice in the preceding example that the transaction always 
maintains a lock on one node in the path, to force new 
transactions that want to read or modify nodes on the same 
path to wait until the current transaction is done.

• If some other transaction (other than the one doing the search 
for key value 38) wants to delete the record containing key 
value 38, it must also traverse the same path from root to 
node D and is forced to wait until the current transaction has 
completed.

– Notice that this also implies that if some earlier transaction preceded 
our transaction searching for key value 38, that our searching 
transaction would have been similarly delayed as the earlier 
transaction would hold the lock on some node in this path.
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Insert Key Value 45
20

10 35

6 12 23 38 44

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

Transaction obtains S-lock on node 
B, releases lock on node A, reads 
contents of node B to determine 
next node to lock is node C. 
Obtains lock on node C.  Note that 
the lock on node B cannot be 
released since node C is full and a 
split may cascade to B.

Transaction obtains S-lock on root 
node (A), reads contents to determine 
next node to examine (B), obtains lock 
on node B, releases lock on node A.

A

B

C

D

Transaction reads 
contents of node C, 
determines need for 
node D, obtains X-
lock on D, releases 
locks on nodes B 
and C since node D 
will not split.

45
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Insert Key Value 25
20

10 35

6 12 23 38 44

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

Transaction obtains S-lock on node 
B, releases lock on node A, reads 
contents of node B to determine 
next node to lock is node C. 
Obtains lock on node C.  Lock on B 
is released.

Transaction obtains S-lock on root 
node (A), reads contents to 
determine next node to examine 
(B), obtains lock on node B, 
releases lock on node A.

A

B

C

D

Transaction reads contents 
of node C, determines need 
for node D, obtains X-lock 
on D, maintains S-lock on 
node C since node D is full. 
The lock on C must be 
upgraded to an X-lock.  Note 
that an X-lock on node E 
must also be obtained to 
update the sibling pointer in 
E.

E F

G
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Concurrency Control: Locking in B+ Trees (cont.)

• Notice in the preceding example if another transaction holds 
an S-lock on node C and also wants to access node D, then a 
deadlock situation will occur because the inserting 
transaction holds an X-lock on node D.

– Inserting transaction holds an X-lock on node D, and is requesting an upgrade 
to an X-lock on node C.  The upgrade request cannot be granted because the 
other transaction holds an S-lock on node C, further, the other transaction’s 
request to access node D cannot be granted since the inserting transaction 
already holds an X-lock on node D.

• The previous example also illustrates an interesting point 
about sibling pointers:  when node D splits, the new node 
must be added to the left of node D, otherwise the node 
whose sibling pointer needs to be changed would be node F, 
which has a different parent. 

– To modify a sibling pointer on F, we would have to lock its parent, node G 
(and possibly ancestors of G, in order to lock G).
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Deadlock Avoidance - Problems Locking Protocols
(cont.)

• There is also a timestamp based protocol (under locking –
don’t confuse this with timestamp based concurrency 
controls we’ll see later) to prevent deadlock under locking 
protocols.

• A timestamp is a unique identifier assigned to each 
transaction based upon the time a transaction begins.

– if ts(TX) < ts(TY) then TX is the older transaction and TY is the 
younger transaction.

– In resolving deadlock issues, the system uses the value of the 
timestamp to determine if a transaction should wait or rollback.
Locking is still used to control concurrency.

– Under rollback a transaction retains its original timestamp.
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Deadlock Resolution – Wait or Die

• Assume that TX requests an object whose lock is held by TY.

• This is a non-preemptive strategy where if ts(TX) < ts(TY) (TX is older 
than TY) then TX is allowed to wait on TY, otherwise TX dies (is rolled 
back).  TY continues to hold the lock and TX subsequently restarts with its 
original timestamp.

– if request is made by older transaction – it waits on the younger transaction.

– if request is made by younger transaction – it dies.

• Example:  let ts(T1) = 5, ts(T2) = 10, ts(T3) = 15

Suppose T2 requests object held by T1.  T2 is younger than T1, T2 dies.

Suppose T1 requests object held by T2.   T1 is older than T2, T1 waits.
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Deadlock Resolution – Wound or Wait

• Assume that TX requests an object whose lock is held by TY.

• This is a preemptive strategy where if ts(TX) < ts(TY) (TX is older than 
TY) then TY is aborted (TX wounds TY).  TX preempts the lock and 
continues.  Otherwise, TX waits on TY.

– if request is made by the younger transaction – it waits on the older 
transaction.

– if request is made by older transaction – it preempts the lock and the younger 
transaction dies.

• Example:  let ts(T1) = 5, ts(T2) = 10, ts(T3) = 15

Suppose T2 requests object held by T1.  T2 is younger than T1, T2 waits.

Suppose T1 requests object held by T2.   T1 is older than T2, T1 gets 
lock and T2 dies.
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Timestamp Deadlock Resolution
• Both wait or die and wound or wait protocols avoid starvation.  At any 

point in time there is a transaction with the smallest timestamp (i.e., 
oldest transaction) and it will not be rolled back in either scheme.

Operational Differences

– In wait or die, the older transaction waits for the younger one to release its 
locks, thus, the older a transaction gets, the more it will wait.  In wound or 
wait, the older transaction never waits.

– In wait or die protocol if transaction T1 dies and is rolled back it will in 
probably be re-issued and generate the same set of requests as before.  It is 
possible for T1 to die several times before it will be granted the lock it is 
requesting as the older transaction is still using the lock.  Whereas, in wound 
or wait, it would restart once and then be blocked.  Typically, the wound or 
wait protocol will result in fewer roll backs than does the wait or die protocol.



COP 4710: Database Systems  (Transaction Processing)          Page 68 Mark Llewellyn ©

Deadlock Avoidance vs. Detection and Resolution

• If the deadlock prevention or avoidance mechanism is not 
100% effective, then it is possible for a set of transactions to
become deadlocked.

• Handling this problem can be achieved in one of two basic 
manners: optimistically or pessimistically.

• Optimistic approaches tend to wait for deadlock to occur 
before doing anything about it, while pessimistic approaches 
tend to make sure that deadlock cannot occur.

• Optimistic approaches use detection and resolution schemes 
while pessimistic approaches use avoidance mechanisms.
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Deadlock Detection and Resolution

• Deadlock detection and resolution involves two phases: 
detection of deadlock and its resolution.

• Deadlock detection is commonly done with wait-for graphs 
(a form of a precedence graph).  Each node in the graph 
represents a transaction in the system.  An edge from 
transaction TX to transaction TY indicates that TX is waiting 
on an object currently held by TY.  A deadlock is detected if 
the graph contains a cycle.

• The resolution phase or the recovery from the deadlock, 
essentially amounts to selecting a victim of the deadlock to 
be rolled back, thus breaking the deadlock.
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Deadlock Detection and Resolution (cont.)

• Selection of a victim to resolve the deadlock can be based upon many 
different things:

– how long has the transactions been processing?

– how much longer does the transaction require to complete?

– how much data has been read/written?

– how many data items are still needed?

– how many transactions will need to be rolled back?

• Once a victim has been selected you can decide how far back to roll it.  It 
is not always necessary for a complete restart.

• Deadlock detection and resolution requires some mechanism to prevent 
starvation from occurring.  Typically this is done by limiting the number 
of times a single transaction can be identified as the “victim”.
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Timestamping Concurrency Control

• No locking is used with timestamp concurrency control.  Do 
not confuse this topic with the timestamped method for 
avoiding deadlock under locking.

• As before, each transaction is issued a unique timestamp 
indicating the time it arrived in the system.

• The size of the timestamp varies from system to system, but 
must be sufficiently large to cover transactions processing 
over long periods of time.  

• Assignment of the timestamp is typically handled by the 
long-term scheduler as transactions are removed from some 
sort of input queue.
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Timestamping Concurrency Control (cont.)

• In addition to the transaction’s timestamp, each object in the 
database has associated with it two timestamps:

– read timestamp – denoted rts(object), and it represents the highest 
timestamp of any transaction which has successfully read this object.

– write timestamp – denoted wts(object), and it represents the highest 
timestamp of any transaction to successfully write this object.

• As with locking the granularity of an “object” in the database 
becomes a concern here, since the overhead of the 
timestamps can be considerable if the granularity is too fine.
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Timestamp Ordering Protocol
READ – transaction TX performs read(object)

if ts(TX) < wts(object)
then rollback TX // implies that the value of the object has been written by a 

// transaction TY which is younger than TX

else // ts(TX) >= wts(object)
execute read(object)
set rts(object_ = max{ rts(object), ts(TX)}

WRITE – transaction TX performs write(object)
if ts(TX) < rts(object)

then rollback TX //implies that the value of the object being produced by TX was 
//read by a transaction TY which is younger than TX and TY

//assumed the value of the object was valid.
else if ts(TX) < wts(object)

then ignore write(object)  //implies that TX is attempting to write an “old”
//value which has been updated by a younger
//transaction.

else
execute write(object
set wts(object) = max{wts(object), ts(TX)}
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Explanation of the Ignore Write Rule

• In the timestamp ordering protocol, when the timestamp of the 
transaction attempting to write an object is less than the write
timestamp of the object of concern, the write is simply ignored.

• This is known as Thomas’s write rule.

• Suppose that we have two transactions T1 and T2 where T1 is the 
older transaction.  T1 attempts to write object X.  If ts(T1) < 
wts(X) then if T2 was the last transaction to write X, wts(X) = 
ts(T2) and between the time T2 wrote X and T1 attempted to write
X, no other transaction Tn read X or otherwise rts(X) > ts(T1) and 
T1 would have aborted when attempting to write X.  Thus T1 and 
T2 have read the same value of X and since T2 is younger, the 
value that would have been written by T1 would simply have been 
overwritten by T2, so T1’s write can be ignored.
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Example - Timestamp Ordering Protocol

final

rts = 0
wts = 0

rts = 0
wts = 0

rts = 0
wts = 0

ts = 175ts = 150ts = 200initial

7

6

5

4

3

2

1

time

ObjectsTransactions

CBAAction

write A

read C

T3

write C

read A

T2

write A

write B

read B

T1

ts(T1) >=  wts(B), OK rts = 200

ts(T2) >=  wts(A), OK rts = 150

ts(T3) >=  wts(C), OK rts = 175

ts(T1) >=  wts(B), OK wts = 200

ts(T1) >=  wts(A), OK wts = 200

ts(T2) <  rts(C), ABORT T2

ts(T3) <  wts(A), IGNORE

rts = 150
wts = 200

rts = 200
wts = 200

rts = 175
wts = 0
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Multiversion Concurrency Control

• Multiversion concurrency control falls into the 
optimistic method of concurrency control and also 
utilizes transaction timestamps to ensure serializability.

• The basic goal of multiversion concurrency control is to 
never block a transaction from reading a database 
object.

• This is done by maintaining several versions of each 
database object (for objects in play), each with a write 
timestamp, and each transaction requesting to read the 
object will read the most recent version of the object 
whose timestamp precedes that transaction’s timestamp.
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Multiversion Concurrency Control (cont.)

• If a transaction Ti wants to write an object, concurrency control 
must ensure that the object has not already be read by some other 
transaction Tj such that ts(Ti) < ts(Tj).

• If transaction Ti is allowed to write the object, that change should 
be seen by Tj for serializability, but obviously Tj, which read the 
object at some time in the past would not see the effect of the write 
performed by Ti.

• To check this condition, every object also has an associated read 
timestamp, and whenever a transaction reads an object, the read 
timestamp is set to the maximum of its current value and the 
timestamp of the transaction performing the read.

• If Ti wants to write object O and ts(Ti) < rts(O), then Ti is aborted 
and restarted with a new, larger timestamp.  Otherwise, Ti creates 
a new version of O and sets the read and write timestamps of the
new version to ts(Ti).


